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Two-phase flows of incompressible fluids with solid particles or bubbles are examined. 
The source for random motion of a large number of particles moving relative to the fluid 
is found. New dimensionless parameters that affect the interaction of phases and the 
intensity of the random particle motion are found. Asymptotically exact expressions are 
obtained for the phase pressures and the interaction forces taking into account the gradient 
terms. The conditions for applicability of the diffusion approximation in the hydrodynamics 
of two-phase media are found. 

Random motion in dispersed media has been studied by the methods of kinetic theory. 
Two-continuum equations of motion of a rarefied dispersed and carrier medium were obtained 
in [I]. A statistical approach to dispersed systems was developed in [2] assuming that the 
change in the velocity of particles between two collisions is small compared to the averaged 
value of the velocities of the random motion. In what follows, we study the opposite 
limiting case. The experiments in [3, 4] on the motion of bubble systems, from which it is 
evident that random motion of bubbles can appear due to their hydrodynamic interaction, are 
of fundamental significance in understanding this case. It is interesting to apply the 
theory of similarity [5] and the results of exact averaging of the equations of mechanics 
in [6] to studying random motion in two-phase media. 

i. Formulation of the Problem and the Method of Solution 

We are examining a viscous incompressible fluid, containing a large number of nonde- 
formable spherical solid particles or bubbles with radius R in a field of potential mass 
forces g. The volume concentration c is not small. 

Let the following inequalities be satisfied: 

L > > R ,  T>>R/~v, ( 1 . 1 )  

where L is the characteristic distance over which the average flow parameters change; T is 
the characteristic time over which they change; w is the relative velocity of the phases. 
Then, on the strength of the first inequality, it is possible to use the approach of a con- 
tinuous medium. 

The second inequality (i.i) indicates that over the characteristic time T the relative 
displacement of particles greatly exceeds their radius, and in this case, the relative mo- 
tion of the phases is significant and it is necessary to use a two-continuum approach. 

Let the accelerations of the phases be equal and constant. We will transform to a 
system moving with the average acceleration of the fluid dv/dt. Then, the mass force equals 
g--dr~dr. Including this force in the pressure, we obtain an equivalent system without mass 
forces. In this case, the external forces 

F(~) == (9~ - -  9 ) (g  - -  dv/dt)V (~  = 1~ 2 . . . .  ), ( 1 . 2 )  

which are the only source of relative motion of the phases, will act on the particles in a 
volume V and with density 0s. 

Assume now that the acceleration of the dispersed phase du/dt is not equal to the 
acceleration of the fluid, but their difference is everywhere small 

!du/dt - -dv/dt]<<ig _ Jv/dt!. ( 1 . 3 )  

Under condition (1.3), we assume in the leading approximation that the accelerations of 
the phases are equal and, assuming that R << L, we can neglect the gradients of the average 
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quantities. Then they can be taken into account as corrections in the next approximation. 
This work is based on this method and inequalities (i.i) and (1.3) are, in this case, the 
only assumptions. 

It can be shown (see Section ii) that condition (1.3) is valid if, in addition to 
(i.i), the following conditions are satisfied: 

F r ~ / w T < < I ,  F r ~ / L ~ t ;  

Fr~== m~/Rg ', g ' : = I g - -  dv/dt], 

w h e r e  F r  i s  F r o u d e ' s  n u m b e r ~  

centrated two-phase medium.* 

(i.4) 

(i.5) 

Conditions (1.4) are not significant limitations for a con- 

2. Random Motion of Particles. Dimensionless Criteria 

Let us examine the motion of a system of particles in a fluid at the microscopic level. 
Mathematically, stationary states of this system are possible when the particles move along 
nodes of a regular periodic lattice under the action of identical forces F(~) (1.2) and the 
fluid simply percolates through a fixed structure. There arises the fundamental problem 
of the stability of such states. 

It is well known [7] that an ordered system of particles moving in an ideal fluid, due 
to the interaction of these particles, is unstable. Small perturbations of the particle 
coordinates increase exponentially with time. 

For small Reynolds numbers the stationary state of the system of particles, moving in 
the fluid under constant external forces, also turns out to be exponentially unstable. 
The characteristic time for breakdown of the stationary state is ~ ~ R/w, if the distance 
between particles is ~R, i.e., essentially, ordered systems cannot exist. This is con- 
firmed by all experiments [3, 4, 8, 9]. 

The instability of stationary states of motion of a system of particles relative to 
the fluid suggests that this system has stochastic properties and its behavior does not 
depend on the details of the initial particle distribution on the microscopic level. 

Such a physical model, following from an analysis of the stability of stationary 
states, agrees with the understanding of random motion of separate bubbles within a bubbling 
bed with finite Reynolds numbers (Re = Rw/v) [3, 4]. 

It is interesting to apply the theory of similarity [5] to the random motion of many 
particles in a fluid under the action of external forces F(~) (1.2). 

Assume that Reynolds number is small (Re << i) and Stokes' equations are valid. Then 
the change in the particle coordinates x(~) and their angular velocities m(a) is determined 
by the action of the external forces (1.2) and hydrodynamic forces and moments, linear with 
respect to the velocities: 

~Y~I ~ V(o~ ~,)g[ ~ ( ~ ) ' < ~ )  ' ( ~ ) ~  (~)~ �9 ~ )  : - -  - -  ~cp~j xj ~.-~j J~(,)j 1--OU/~xi , ( 2 . 1 )  

2 ~ 4 .~ . . .  g ,  

The dimensionless functions (~(~>, ${~), x (~) , and ~(aS) depend only on the dimensionless 
coordinates of all particles relative to a fixed coordinate (x (~) -- x(~))/R, (x (~) -- x(~))/R, 

Equations (2.1) are written in a system of coordinates in which the velocity of the 
fluid (averaged over the volume of a sphere with quite large radius) vanishes v = O. The 
quantity U on the right side of the first equation in (2.1) describes the interaction of 
particles on impact; U = ~ when the distance between the surfaces of any particles becomes 
zero. It is correct to take into account the inertial terms in (2.1) only for 0s >> ~. In 
the opposite case, to within small terms of order ~Re, they should be omitted. In the case 
of comparable densities Ps ~ ~, solving the linear system (2.1) relative to the velocities 

*From the theory developed in what follows, it follows that conditions (1.4) are always 
satisfied if the concentrated two-phase medium is stable. They break down only in the case 
of strong instability. 
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of all particles, we will determine the velocities of particles as a function of their 

relative positions : 

d'-"~t . . . .  : It g i t+iJ [ ~- , I t  . . . .  / '  ( 2 . 2 )  

where i, j = i, 2, 3; ~ = i, 2, ...; F!~ ) is a dimensionless function. The random velocity 
13 

of the particles with Re << 1 is related according to (2.2) to the random position of 

neighboring particles next to the given particle. 

The random process of change of the coordinates, described by (2.2), for different 
values of the particle radius R and of the product (0s -- P)R2g'/~ is reduced, by a simi- 
larity transformation, to a single random process. It is important that in this case all 
random characteristics of the mutual position of particles turn out to be similar and de- 
pend only on the geometrical parameters and concentration c. It is important �9 there is 
no isotropy, since a direction w has been singled out. A single similarity criterion fol- 
lows from Eqs. (2.1) (aside from the parameter c): 

I I=  = ,~,o[n~ - -  i'~1t~, [/~:~,'tt ~. ( 2 . 3 )  

If Eqs. (2.1) are put into dimensional form, then the r[ number will be the coefficient 
in front of the inertial term d2x/dt 2. Thus, ~ determines the contribution of inertial 
terms in Eqs. (2.1), which becomes important for sufficiently large number ]~. 

Similarity Criterion for Finite Reynolds Number. Without writing out the equations, 
it is possible to indicate the determining parameters of the system ps, iPs- Plg', P, D, 
R, and c. From these quantities, it is possible to form three dimensionless criteria: 
Archimedes' number Ar, the ratio of densities X, and concentration c: 

Ar := PiPs -- Pllg'[RS/l ~ ,  Z ---- Pip. (2.4) 

It is fundamentally important to take into account two similarity criteria, since, in par- 
ticular, for Re << I, neither Ar nor X separately isa similarity criterion. Instead of (2.4), 
the criterion will be F = X Ar. lhe appearance of the number X or H is related to the 
random nature of the two-phase medium. Entil now these numbers were not taken into account, 
since the relative motion of the phases was viewed as percolation of the fluid through a 
fixed particle structure. 

3. Equation for Average Quantities. Froude's Number 

Let Re << i, then according to (2.1) and (2.3) and based on the theory Of similarity 
[5], the relative velocity of the phases is 

w =:  u - - v  = (p, - - n ) g ' l A ,  A = (~lR2)a(c, n ) ,  ( 3 . 1 )  

where G is a dimensionless function. Let us introduce Froude's number (1.5). 

Taking into account (3.1), the friction force F*, acting on a unit volume of the dis- 
dispersed phase, for Re << i, can be represented in the form 

- - F *  = p R - 2 G ( c ,  Fr)w = A w ,  ( 3 . 2 )  

since the resistance force of a separate particle on the average equals the motive force 
F(~) (1.2). If Eqs. (2.1) are put into dimensionless form, using the value of w (3.1), 
then the number Fr = ~ EG 2 will occur in front of the inertial term in (2.1). It is evident 
that the simplified equations (2.2) correspond to the values Fr << i, while Eqs. (2.1) 
correspond to the values Fr ~ i. 

It is evident from (3.2) that even for small Reynolds numbers the friction force for 
the phases can depend nonlinearly on the relative velocity of the phases w due to the effect 
of the number Fr on the chaotic particle motion. For finite Reynolds numbers, the fric- 
tion force between the phases, from considerations of similarity, is written in the form 

E* . . . .  C ~ H - t p l ~ v [ w ,  C ~ - :  C,,(Re, Z,c) .  ( 3 . 3 )  

It is significant that the dimensionless coefficient C w in (3.3) depends on the relative 
densities X. 
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�9 Numerous experiments on settling of solid particles in a fluid [i0], whose conditions 
correspond to the values Fr ~% i, give dependences of the form 

,t = ~o(~  --c) ~, 

where n ~ 5 for Re ~ I. In these experiments, closed vessels were used. For this reason 
(i- c)v = --cu, i.e., there was a rising flux of fluid v ~= 0. Taking this into account, 
based on the data in [i0], we obtain the following empirical dependence: 

." ~ , , ~ i - - - c )  ~-~, (;(c)= G o ( l -  c) ~ - ' .  

where Go is a constant for Re ~ i, Fr << i. As the Reynolds number increases, the index n 
decreases from 5 to 2.5 [9, i0]. The effect of Froude's number Fr or the number X on the 
settling rate has not yet been studied experimentally. 

4. Local Nature of Generation of Chaotic Motion 

Random motion is caused in the particle velocities by the presence of the motive forces 
F(~) (1.2). An exchange of kinetic energy of particles between two macroscopic volumes is 
impossible. As a result of this, the kinetic energy is not a source of randomness. In 
order to verify this, let us estimate the characteristic distance X, over which the energy 
of translational particle motion with characteristic velocity w dissipates. 

In the case Ps ~ P, comparing the characteristic work of friction forces %,F*V 
X,psg'V and kinetic energy ~0sw2V, we find taking into account (3.1) and (3.2) the estimate 

~ , N R F r  2. (4.1) 

The estimate (4.1) is also valid for the case 0s << P. In the general case, (4.1) can be 
represented in terms of the drag coefficient C w in the form 

~ . ~ R ,  psi>p; % , ~ ,  p~<<p. (4.2) 

The e s t ima te s  (4.1) and (4.2) show t h a t  X, >> R only fo r  l a rge  Proude number (Fr >> i)  or 
very heavy p a r t i c l e s  (Ps/P >> 1).  

I f ,  in  a d d i t i o n  to e s t ima te s  (4.1) and (4 .2 ) ,  the r e s t r i c t i o n  (1.3) i s  taken in to  
account ,  which i s  necessa ry  to impose on the c h a r a c t e r i s t i c  macroscopic s c a l e  L, then we 
obtain that X, << L. From this follows an important result. Exchange of kinetic energy 
of chaotic motion between regions at macroscopic distance L >> R is impossible. At each 
point of the two-phase continuous medium, a local equilibrium state is established, inde- 
pendent of the neighboring macroscopic regions. The mechanism of heat transfer, which is 

characteristic of an inhomogeneous rarefied gas, is absent. 

5. Estimate of the Intensity ol Random Particle Motion 

Let us try to obtain an energy estimate for the intensity of chaos, starting from the 
ideas of Sec. 2. First, we note that in a random system of particles, moving in a fluid, 
fluctuations on different scales are present. In this case, velocity fluctuations are 
correlated only for quite close particles, situated at distances ~R. Therefore, the scale 

of fluctuations is ~R. 

For small Reynolds and Froude's numbers, Eqs. (2.2) are correct and from them it fol- 

lows that in order of magnitude 

V(6u) ~ =-I wl ~(c), ( 5 .1 )  

where ~(c) ~I in a concentrated system. In a rarefied system, the perturbation of particle 
i / 3  

velocity caused by the presence of neighboring particles is of the order of c , so that 

for c->O, ~cI/3. 

In the general case) the change in the kinetic energy of particles and fluid in fluc- 
tuation motion on the scale ~R is limited by the work of the external force F (~) (1.2) on 
this scale. Part of this work over the lifetime of the fluctuation T ~ R/~u is dissipated 
due to viscous friction. To within a function of concentration c, we have 

p~(6u) ~ ~< ]i)~ - -  plg'R, g' = Ig - -  dv/~l .  ( 5 . 2 )  
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If Ps ~ r then on the left side of (5.2) we will have p(du) 2. For Fr ~ !, it follows 

from (5.2) that 

For finite Reynolds 
and (3.3) that 

(6u) ~ ~ I w 1% (c) Fr - I .  

numbers and for density ratios Os ~ P,  

(5.3) 

it follows from (5.2)~ (1.2), 

In a concentrated system, C w ~ i. 

It follows from Eqs. (5.3) and (5.4) that the intensity of random motion decreases with 
increasing particle density. Velocity fluctuations 6u exist for Re << ! only if Fr ~ i. 
In the region Fr -~o, the quantity 6u/w§ and there are practically no velocity fluctuations. 
Similarly, for finite Reynolds numbers, for heavy particles (Ps/P >> I), the amplitude of 
fluctuations 6u << w. 

The conditions obtained for the existence of randomness in velocities are much more 
restrictive than the conditions of validity (1.3) or the diffusion approximation (see Sec. 

li). 

It is also evident by comparing (5.3) and (5.4) with (4.1) and (4.2) that in the region 
of parameters where there is significant randomness in velocities exchange of kinetic energy 
of fluctuating motion between macroscopic regions is always absent: 

6. Equations of Motion 

Let us proceed to determine the small corrections to the equations of the leading 
approximation in Sec. 3. We will write the averaged equations of mechanics in exact form 
[6]: 

(l - -  c)pdv/dt + cpsdu/dt = (t - -  c)pg + cpsg - -  VP + div [--(1 - -  c)p6vSv - -  cp~6ufu + ~],  ( 6 . 1 )  

cpflu/dt ~ cpsg - -  div(cps 8uSu) q- cF, 

dc/dt 4 div(cu)  = 0, --Oc/cOt + div [ ( l - - c ) v ]  = 0. 

The f i r s t  e q u a t i o n  i n  ( 6 . 1 )  d e s c r i b e s  t h e  m o t i o n  o f  t h e  m i x t u r e  as  a w h o l e ;  o i s  t h e  v i s c o u s  
s t r e s s ;  p i s  t h e  p r e s s u r e .  The b a r  i n d i c a t e s  a v e r a g e s  w i t h  r e s p e c t  t o  f l u c t u a t i o n s .  I n  
the second equation in (6.1), describing particle motion, F is the average force acting on 
a given particle from the side of the flux and, generally speaking, other particles. F, 
in particular, includes viscous stresses in the medium of particles, which are second-order 
infinitesimals with respect to R/L << I, i.e., they are negligibly small. 

In the leading approximation with respect to the small parameters (!.i), the small 
gradients should be neglected in Eqs. (6ol) and du/dt----dvdt should be used (Set. i). In 
this case, the phase interaction force F(0) is determined according to Sec. 3 in the form 

F(o) -= - -pg '  + F*, ( 6 . 2 )  

w h e r e  F* i s  d e f i n e d  by Eq. ( 3 . 2 )  o r  ( 3 . 3 ) .  

In the next approximation, in Eqs. (5.1), it is necessary to take into account small 
corrections which are linear with respect to the gradients of average quantities and the 
mass force g': 

F = F(0) + k w c  + k2vg '  + k3vv + k4dg'/dt. ( 6 . 3 )  

The quantities V u and V w did not enter into (6.3), since according to Eqs. (3ol) and (3.3) 
they are expressed in terms of V r and V v. For a similar reason~ dc/dt is not taken into 
account in (6.3). 

The tensor coefficients k a have the form 

k~ = Qa(~'~(c, Ar, %, e) = Qa(Da(C, Re, %, e), ( 6 . 4 )  

where Qa are scalar dimensional combinations of the parameters R, ~, p; ~a are dimensionless 
tensor functions; e is a unit vector along w. Similarly, the pressure tensor in (6ol), due 
to pressure arising as a result of fluctuations in particle velocities, equals 
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Ps =: cpfiu6u : :  psw~k~(c, Re, %, e). ( 6 . 5 )  

The average quantity 6v6v is calculated in the same form. Equations (6.1)-(6.4) together 
with (3.1)-(3.3) represent the equations of a two-phase medium taking into account gradients. 
The form of the unknown tensor functions k a can be found with the help of the theory of 
similarity and symmetry considerations [ll]. 

7. General Equation for the Force F for Re << i 

In determining the dependence (6.2), it is necessary to take into account that the 
space is isotropic and the tensor functions k a depend on the direction of the vector g' or 
W. 

From Eqs. (6.2)-(6.4) and (3.1), (3.2), taking into account similarity and symmetry, 
we find 

F : - - pg '  - -  A(w q- avc  q- b v v  q- dvg '  Jr hdg'/dt), 

where the tensor coefficients are defined in terms of e i : wJ[w] by the equations 

a ,  = R Iw I(A6. +/~eiey), 

bijh = R(blei6n~ + b~ej~i~ + baehOij q- b4eiejeh). 

( 7 . 1 )  

(7.2) 

The tensors hij and dij k are written similarly to (7.2). In many practically important 
problems, it is possible to neglect a change in acceleration g' and, correspondingly, to 
drop the terms with h and d in (7.1). The scalar coefficients entering into (7.2) depend 
only on the concentrations c and Froude's number Fr. The coefficient bl = 0 in (7.2) with- 
out loss of generality, since in accordance with the equations of continuity (6.1) and 
taking into account the leading approximation (3.1), div v is expressed in terms of Vc and 
Vg'. The term bvv in (7.1), according to (7.2), is defined by the equation 

]w]R-!(bvv)~ = b2[w, rot v l i  + (b3 § b2)(wv)vi + b~(e(ev)v)wi. ( 7 . 3 )  

The first term on the right side of (7.3) determines the transverse force 6FI acting 
on the dispersed phase. The force ~Fx differs from the well-known Magnus force by a coef- 
ficient. For Re << i, the quantity ~FI exceeds the Magnus force by the factor Re -~ (b2 
0). The appearance of a new transverse force is related to taking into account the random 
particle motion. It is explained by the breakdown of the equilibrium state of random mo- 
tion, introduced by a change in the velocity field over a long time of the order of T 
I/IVy ]. It is clear that in this case there must indeed arise a correction to the force F* 
of the order of ~/tN IVv]R/w, where T ~ R/w is a short characteristic time for establishing 
randomness in a concentrated system. 

The transverse force 6FI has meaning for describing the motion of concentrated suspen- 
sions in the presence,of shearing deformations and, in particular, for motion in vertical 
channels. It can cause considerable change in the concentration distribution over the 
channel cross section under conditions when the usual Magnus force equals zero. 

Let us proceed to corrections in the force of interaction between phases (7.1), owing 
to the concentration gradient Vc. 

8. Diffusion Model of Forces (Re << i) 

The reason for the appearance of the term avc in (7.1) is clear from the following 

model. 

Let us separate the volume particle flux J = cu into two parts: the hydrodynamic 
(systematic) flux cu~ and a diffusion flux DVC , stemming from chaotic motion of particles 

with a tensor diffusion coefficient D: 

J --  cu = cull - -  DVC. ( 8 . 1 )  

Assuming that the force of friction between the phases F* depends on the systematic velocity 
u H exactly as in the uniform state, we obtain from (8.1) and the equations of the leading 
approximation (3.2) 

I ' . t o,1,,, DVc'!. ( 8 . 2 )  F* = F(o ) ( u l t -  v) . . . . .  A w cA & v  / 

808 



Since the parameters on which the chaotic particle motion mainly depends are known~ from the 
theory of similarity and symmetry considerations, we have 

D u = D• u + (D Oi)m~wjwi~ (8 .3)  

D = B!wr/(c, Fr), D i  : B]w]/~(c, Fr). 

Expressions (8.2) and (8.3) are equivalent to taking into account the terms w and ave in 
the friction force in (7.1). We note that transport coefficients of the form D ~ Rw were 
introduced in [3, 4] in studying a system of floating bubbles with finite Reynolds numbers. 

It is significant that diffusion is present for Re+0 as well and, primarily, that the 
transport coefficient D greatly affects corrections of the order of R/L to the force of 
interaction between phases. Apparently, the term DV0 , generally, is the leading correc- 
tion. 

The dependence of the diffusion coefficient D on the Froude number is important. Tak- 
ing into account the fact that D ~ R~u, where ~u is the mean-square fluctuation in the 
velocity, we obtain from (5.3) that D+0 for Fr-~=, i.e., diffusion vanishes for large Froude 
numbers. Diffusion is noticeable for Fr < i. 

9. Equations for Small Froude Numbers 

In addition to the force F, Eqs. (6.1) include pressure fluctuations. The pressure 
tensor in a medium of particles P~ is determined from (6.5) in the form 

(P~)u - P~S• + p~(S - -  S• (9 .1 )  

where the dimensionless functions S and S• depend on c and Fr. For small Reynolds numbers, 
a similar contribution 6v6v to (6.1) is always negligibly small. It makes sense to take 
into account (9ol) for Ps >> P. 

For small concentration c, ~u ~ wc ~/3, so that S, S• ~ cS/a. 

For large Froude numbers (Fr-~o), the functions S and S• in (9.1) decrease as Fr -2. 
Therefore, the pressure P~ --~0 for Fr-~. For small Froude numbers (Fr << I), from (9.1) 
and (7.2), (3.2) follow estimates of the role of pressure P~ and corrections 6F to the 
force F(0>: 

div P~Np~w2/L,  5F ~ p w / B L ~ p w 2 / R e L .  

Taking into account the fact that Re ps/p ~ Fr a, we obtain from here that for small Froude 
n~bers the pressure of the dispersed phase is negligibly small, Ps ~Fr25F. It is evident 
from here that the pressure from particles Ps plays a secondary role in the equations tom- 
pared to the diffusion terms, determined by (8.2) or 

Estimates show that in equations with Fr << 1 the 
should be neglected~ but it is necessary to take into 
force. In this case, the equation of relative motion 
(7.1) 

w : ( p - - p s ) g ' A - l - - a v o - - b v  v. 

The simplified diffusion model of Sec. 8 corresponds to b = 0 in Eq. 

(7.1). 

difference in the accelerated phases 
account diffusion corrections to the 
of the phases follows from (6.1) and 

(9.2) 

( 9 , 2 ) ,  

I0. Interphase Interaction and Pressure of Particles 

with Finite Reynolds Numbers 

For Re > I, the expression for the force following from (6~ similar to (7.1), has 
the form 

F ~ - -pg ' - -R-1C~plw][w ~ arc  q - b v v  ~ dvg'  ~ hdg'/dt]. (10,1)  

The coefficients a, b, d, h are again determined by equations of the type (7.2), but 
they now depend on X = Ps/P and Re (aside from c). For Re >> i, the coefficients in (i0~ 
evidently, depend weakly on Re. The coefficient a is similar to the tensor c-iD in the 
diffusion expression (8~2). The diffusion tensor D depends on the density ratio. On the 
strength of (5.4), the quantity D ~ ~ + 0  for X-~ ~, The diffusion term is significant only 
in the case of comparable particle and fluid densities Ps ~P. The diffusion coefficients 
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must be maximum in bubble media, studied in [3, 4]. For small changes in the acceleration 
of the flow, in (i0.i), the coefficients d = 0 and h = O. 

The functions S and S x in the pressure Ps (9.1) depend on c, Re, and X- However, the 
dependence on Re for Re >> i, as usual, should be insignificant. But the dependence of S 
on X is fundamental. Using (5.4), we see that S->O for X = Ps/P -~ as X -~. Thus, the pres- 
sure in the particle medium, stemming from particle collisions, approaches zero with in- 
creasing particle and fluid density ratio Ps/P. 

APPENDIX 

ii. Condition of Applicability of the Approximation of Equal 

Accelerations 

The momentum equation for the dispersed phase has the form [6] 

P s - ' ~ ' =  Psg--P g av C 

In the equations, we neglect small contributions of viscous and fluctuation stresses. 
Taking them into account does not essentially change the following estimates. 

Expressing uvu in terms of vvv , we transform (ii.i) to the form 

dv , Ow Ps(- '~ ' -~ +(vV) +(wV) v + ( w V ) w - - g ) * p ( g - -  d ~ ) =  Cw -~- w -n-- ow Jwl. (11.2) 

Let us introduce the dimensionless variables, corresponding to the space and time 
scales of variation of the flux parameters, L and T. Comparing terms containing w on the 
left and right sides of (11.2), we see that to within small quantities of the order of 

Ps R ~'s 
Tw pC~ <<I' -T pc-----~ <<I (11,3) 

terms w i th  w on the l e f t  side of (11.2) can be neglected. The p o s s i b i l i t y  of (11.3) stems 
from the s t a r t i n g  i n e q u a l i t i e s  ( i . i ) .  In th is  case, the equation of the d i f f u s i o n  approx i -  
mation follows from (11.2) 

-- Ps)(g -- dv/dt) = --R-~Cwpw IwJ. ( l l .  4) 

The equation for the momenta of the two-phase medium transforms in a similar manner. 
In this case, the equations correspond to the motion of a mixture as a homogeneous mix- 
ture, while the velocity of relative motion of phases is determined by the acceleration g'. 
This is the approximation of equal phase accelerations, when (1.3) is valid. 

It is evident from (11.3) that for CwP/0 s ~ 1 the conditions for the validity of the 
diffusion approximation are satisfied with the same accuracy as the conditions for appli- 
cability of the continuous medium approach (i.i). This is always satisfied for Ps ~ P, 
since C w ~ i. Therefore, the diffusion approximation is useful for bubbles, drops, or 
solid particles in a fluid. 

Conditions (11.3) can break down only for heavy particles, when Ps >> P (e.g., parti- 
cles in a gas) and if the scales L and T are not sufficiently large. In the case of small 
Reynolds numbers and Ps >> P, conditions (11.3) can be rewritten in the form (1.4). The 
diffusion approximation may be inapplicable only for large Froude numbers Fr >> i. 

1. 

2. 

3. 
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FORMATION OF TAYLOR VORTICES BETWEEN HEATED ROTATING CYLINDERS 

V. Vo Kolesov UDC 532.516 

Experimental observations [1-4] show that a secondary steady flow of the Taylor vortex 
type (rotationally symmetric toroidal vortex cells regularly positioned along the symmetry 
axis of the cylinders) can arise as the result of the loss of stability of a nonisothermal 
Couette flow between concentric cylinders rotating with different angular velocities. This 
secondary flow was found in [5] by the Lyapunov-Shmidt method in the case in which the 
cylinders are rotating in the same direction and the Prandtl number is equal to unity. 

Results are presented in this paper of calculations of Taylor vortices both for the 
case in which the cylinders rotate in the same direction and for the case of an opposite 
rotation direction of the cylinders. The change in the structure of the vortices as the 
values of the parameters of the problem vary is illustrated by the pattern of the stream 
lines of the secondary flow. Analytic dependences of the amplitude of the vortices and the 
decrement of a nonisothermal Couette flow on the Prandtl number are obtained, which eliminate 
the need to make time-consuming calculations and permit establishing some properties of the 
fundamental and secondary regimes. One should note that a similar dependence of the ampli- 
tude of the secondary regime on the Prandtl number for the steady problem of free convection 
in a layer of liquid was established and used in the calculations in [6]. 

i. The Lyapunov--Shmidt Series. Let a viscous uniform heat-conducting liquid fill the 
cavity between two infinite solid concentric cylinders. The radii, angular velocities, and 
temperatures of the inner and outer cylinders will be denoted by RI, ~, 01 and R~, ~a, @2, 
respectively. 

We will assume that there are no external body forces and the discharge rate of the 
liquid through the transverse cross section of the cavity of the cylinders is equal to zero. 
Then the Navier--Stokes equations and the thermal conductivity equation permit an exact solu- 
tion (a nonisothermal Couette flow) with the velocity vector U0 = {e0r, u0~, uoz}, temperature 
To, and pressure H0 (r, ~, and z are dimensionless cylindrical coordinates): 

Uo = {0, Vo(r), 0}, Vo = a r - l - b / r ,  T O = c l n r  @ t,  (1 .1 )  
r 

1 

a = ( I R  = - 1 ) / ( 1  = - 1 ) ,  b = l - - a ,  c = (O- -  t ) / lnR,  

where ~ = Bc@~Pr is the Rayleigh number, Pr = v/X is the Prandtl number, ~, v, and X are the 
thermal expansion, kinematic viscosity, and thermal conductivity coefficients, respectively, 
R = R=/RI, ~ = aa/~1, and O = 82/01. 
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